
The Secrets of Concurrency 1

The Secrets of
Concurrency

Dr Heinz M. Kabutz
heinz@javaspecialists.eu

© 2007-2009 Heinz Kabutz – All Rights Reserved

The Secrets of Concurrency

Background

 Heinz Kabutz
– Living on a Greek island in the Mediterranean (Crete)
– The Java Specialists’ Newsletter

• 50 000 readers in 120 countries
• http://www.javaspecialists.eu

– Java Champion

– Actively code Java

– Teach Java to companies:
• Java Specialist Master Course

– Sun EXL-3500 Extreme Learning Course
• Java Design Patterns Course
• http://www.javaspecialists.eu/courses

2

The Secrets of Concurrency

Why Crete?

 Airport 10 minutes from my house

 24 mbit/s connection to internet (some areas)

 Closer to customers than Cape Town

 Great lifestyle, good food, clean air

 Super friendly citizens

 Wife and children are Greek citizens

 And now for the real reason ...

3

The Secrets of Concurrency 4

2.2: The Secrets of Concurrency

 Writing correct concurrent code can be a real
challenge; only perfect is good enough

 You need to synchronize in the precisely correct
places
– Too much synchronization and you risk deadlock and

contention
– Too little synchronization and you risk seeing early writes,

corrupt data, race conditions and stale local copies of fields

 In this section, we will look at ten laws that will make
it easier for you to write correct thread-safe code.

The Secrets of Concurrency 5

2.2: The Secrets of Concurrency

 The ten laws that will help you write thread-safe code
– Law 1: The Law of the Sabotaged Doorbell
– Law 2: The Law of the Xerox Copier
– Law 3: The Law of the Overstocked Haberdashery
– Law 4: The Law of the Blind Spot
– Law 5: The Law of the Leaked Memo
– Law 6: The Law of the Corrupt Politician
– Law 7: The Law of the Micromanager
– Law 8: The Law of Cretan Driving
– Law 9: The Law of Sudden Riches
– Law 10: The Law of the Uneaten Lutefisk

The Secrets of Concurrency 6

Instead of arbitrarily suppressing interruptions,
manage them better.

* Removing the batteries from your doorbell to
avoid hawkers also shuts out people that you

want to have as visitors

1. The Law of the
Sabotaged Doorbell

The Secrets of Concurrency 7

Law 1: The Law of the Sabotaged Doorbell

 Have you ever seen code like this?

 We will answer the following questions:
– What does InterruptedException mean?

– How should we handle it?

try {
 Thread.sleep(1000);
} catch(InterruptedException ex) {
 // this won’t happen here
}

The Secrets of Concurrency 8

Shutting Down Threads

 Shutdown threads when they are inactive
– In WAITING or TIMED_WAITING states:

• Thread.sleep()
• BlockingQueue.get()
• Semaphore.acquire()
• wait()
• join()

Law 1: The Law of the Sabotaged Doorbell

The Secrets of Concurrency 9

Thread “interrupted” Status

 You can interrupt a thread with:
– someThread.interrupt();
– Sets the “interrupted” status to true
– What else?

• If thread is in state WAITING or TIMED_WAITING, the
thread immediately returns by throwing
InterruptedException and sets “interrupted” status back
to false

• Else, the thread does nothing else. In this case,
someThread.isInterrupted() will return true

Law 1: The Law of the Sabotaged Doorbell

The Secrets of Concurrency 10

How to Handle InterruptedException?

 Option 1: Simply re-throw InterruptedException
– Approach used by java.util.concurrency
– Not always possible if we are overriding a method

 Option 2: Catch it and return
– Our current “interrupted” state should be set to true
– Add a boolean volatile “running” field as backup mechanism

Law 1: The Law of the Sabotaged Doorbell

while (running) {
 // do something
 try {
 TimeUnit.SECONDS.sleep(1);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 break;
 }
}

The Secrets of Concurrency 11

Protect yourself by making copies of objects

* Never give your originals to anyone, even a bank!

2. The Law of the Xerox
Copier

The Secrets of Concurrency

"Safe as a Bank"

 Our home loan
application was
lying on the desk
the day this bank
was trashed by
rioters

 Fortunately, we
had only given
them copies of
our important
documents!

12

Law 2: The Law of the Xerox Copier

© Greg Manset

The Secrets of Concurrency 13

Law 2: The Law of the Xerox Copier

 Immutable objects are always thread safe
– No stale values, race conditions or early writes

 For concurrency, immutable means [Goetz'06]
– State cannot be modified after construction

– All the fields are final
– 'this' reference does not escape during construction

Law 2: The Law of the Xerox Copier

The Secrets of Concurrency

How do we use an Immutable Object?

 Whenever we want to change it, make a copy
– e.g. String '+' operator produces a new String

 Additional GC expense, but concurrency is easier

14

Law 2: The Law of the Xerox Copier

The Secrets of Concurrency

Basic Thread-Safe ArrayList

15

public class ImmutableArrayList<E> implements Iterable<E> {
 private final Object[] elements;

 public ImmutableArrayList() {
 this.elements = new Object[0];
 }

 private ImmutableArrayList(Object[] elements) {
 this.elements = elements;
 }

 public int size() { return elements.length; }

 public ImmutableArrayList<E> add(E o) {
 Object[] new_elements = new Object[elements.length + 1];
 System.arraycopy(elements, 0,
 new_elements, 0, elements.length);
 new_elements[new_elements.length - 1] = o;
 return new ImmutableArrayList<E>(new_elements);
 }

Law 2: The Law of the Xerox Copier

The Secrets of Concurrency

Thread-Safe Iterator

16

 public Iterator<E> iterator() {
 return new Iterator<E>() {
 int pos = 0;

 public boolean hasNext() {
 return pos < elements.length;
 }

 public E next() {
 return (E) elements[pos++];
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
 };
 }
}

Law 2: The Law of the Xerox Copier

The Secrets of Concurrency

Using ImmutableArrayList

 We use this in a more functional approach:

17

ImmutableArrayList<String> ial =
 new ImmutableArrayList<String>();
ial = ial.add("Heinz").add("Max").add("Kabutz");
for (Object o : ial) {
 System.out.println("o = " + o);
}

The Secrets of Concurrency 18

Having too many threads is bad for your application.
Performance will degrade and debugging will become

difficult.

* Haberdashery: A shop selling sewing wares, e.g.
threads and needles.

3. The Law of the
Overstocked Haberdashery

The Secrets of Concurrency 19

Law 3: The Law of the Overstocked
Haberdashery

 Story: Client-side library running on server

 We will answer the following questions:
– How many threads can you create?
– What is the limiting factor?

– How can we create more threads?

The Secrets of Concurrency

Quick Demo

How many inactive threads can we
create, before running out of memory?

20

The Secrets of Concurrency 21

Law 3: The Law of the Overstocked Haberdashery

import java.util.concurrent.atomic.AtomicInteger;
public class ThreadCreationTest {
 public static void main(String[] args) {
 final AtomicInteger threads_created =

 new AtomicInteger(0);
 while (true) {
 new Thread() { { start(); }
 public void run() {
 System.out.println("threads created: " +
 threads_created.incrementAndGet());
 synchronized (this) {
 try { wait(); }
 catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 }
 }
 };
 }
 }
}

The Secrets of Concurrency 22

JRE Dies with Internal Error

Exception in thread "main" java.lang.OutOfMemoryError:
unable to create new native thread

 at java.lang.Thread.start0(Native Method)
 at java.lang.Thread.start(Thread.java:597)
 at ThreadCreationTest$1.<init>(ThreadCreationTest:8)
 at ThreadCreationTest.main(ThreadCreationTest.java:7)
#
An unexpected error has been detected by Java Runtime

Environment:
#
Internal Error (455843455054494F4E530E4350500134)
Java VM: Java HotSpot(TM) Client VM (1.6.0_01-b06)
An error report file with more information is saved as

hs_err_pid22142.log
#
Aborted (core dumped)

Law 3: The Law of the Overstocked Haberdashery

The Secrets of Concurrency 23

How to Create More Threads?

 We created about 9000 threads

 Reduce stack size
– java -Xss48k ThreadCreationTest

• 32284 threads
• Had to kill with -9

– My first computer had 48k total memory
• Imagine 32000 ZX Spectrums connected as one

computer!
– Can cause other problems with debugging

Law 3: The Law of the Overstocked Haberdashery

The Secrets of Concurrency 24

Causing Thread Dumps

 The jstack tool dumps threads of process
– Similar to CTRL+Break (Windows) or CTRL+\ (Unix)

 For thread dump JSP page
– http://javaspecialists.eu/archive/Issue132.html

– Sorted threads allow you to diff between calls

Law 3: The Law of the Overstocked Haberdashery

The Secrets of Concurrency 25

How Many Threads is Healthy?

 Additional threads should improve performance

 Not too many active threads
– ± 4 active per core

 Inactive threads
– Number is architecture specific
– But 9000 per core is way too much

• Consume memory
• Can cause sudden death of the JVM
• What if a few hundred threads become active suddenly?

Law 3: The Law of the Overstocked Haberdashery

The Secrets of Concurrency 26

Traffic Calming

 Thread pooling good way to control number

 Use new ExecutorService
– Fixed Thread Pool

 For small tasks, thread pools can be faster
– Not main consideration

 See http://www.javaspecialists.eu/archive/Issue149.html

Law 3: The Law of the Overstocked Haberdashery

The Secrets of Concurrency 27

It is not always possible to
see what other threads (cars) are doing

with shared data (road)

4. The Law of the
Blind Spot

The Secrets of Concurrency 28

Law 4: The Law of the Blind Spot

The Secrets of Concurrency 29

Law 4: The Law of the Blind Spot

 Java Memory Model allows thread to keep local copy
of fields

 Your thread might not see another thread’s changes

 Usually happens when you try to avoid
synchronization

Law 4: The Law of the Blind Spot

The Secrets of Concurrency 30

Calling shutdown() might have no effect

Law 4: The Law of the Blind Spot

public class Runner {
 private boolean running = true;
 public void doJob() {
 while(running) {
 // do something
 }
 }
 public void shutdown() {
 running = false;
 }
}

The Secrets of Concurrency 31

Why?

 Thread1 calls doJob() and makes a local copy of
running

 Thread2 calls shutdown() and modifies the value of
field running

 Thread1 does not see the changed value of running
and continues reading the local stale value

Law 4: The Law of the Blind Spot

The Secrets of Concurrency 32

Making Field Changes Visible

 Three ways of preventing this
– Make field volatile

– Make field final puts a “freeze” on value
– Make read and writes to field synchronized

• Also includes new locks

Law 4: The Law of the Blind Spot

The Secrets of Concurrency 33

Better MyThread

Law 4: The Law of the Blind Spot

public class Runner {
 private volatile boolean running = true;
 public void doJob() {
 while(running) {
 // do something
 }
 }
 public void shutdown() {
 running = false;
 }
}

The Secrets of Concurrency 34

The JVM is allowed to reorder your statements
resulting in seemingly impossible states (seen from

the outside)

* Memo about hostile takeover bid left lying in
photocopy machine

5. The Law of the
Leaked Memo

The Secrets of Concurrency 35

Law 5: The Law of the Leaked Memo

 If two threads call f() and g(), what are the possible values of a
and b ?

public class EarlyWrites {
 private int x;
 private int y;
 public void f() {
 int a = x;
 y = 3;
 }
 public void g() {
 int b = y;
 x = 4;
 }
}

Early writes can result
in: a=4, b=3

The Secrets of Concurrency 36

The order of Things

 Java Memory Model allows reordering of statements

 Includes writing of fields

 To the writing thread, statements appear in order

Law 5: The Law of the Leaked Memo

The Secrets of Concurrency 37

How to Prevent This?

 JVM is not allowed to move writes out of
synchronized block
– Allowed to move statements into a synchronized block

 Keyword volatile prevents early writes
– From the Java Memory Model:

• There is a happens-before edge from a write to a volatile
variable v to all subsequent reads of v by any thread
(where subsequent is defined according to the
synchronization order)

Law 5: The Law of the Leaked Memo

The Secrets of Concurrency 38

In the absence of proper controls,
corruption is unavoidable.

* Lord Acton: Power tends to corrupt. Absolute

power corrupts absolutely.

6. The Law of the
Corrupt Politician

The Secrets of Concurrency 39

Law 6: The Law of the Corrupt Politician

 Without controls, the best code can go bad

public class BankAccount {
 private int balance;
 public BankAccount(int balance) {
 this.balance = balance;
 }
 public void deposit(int amount) {
 balance += amount;
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() { return balance; }
}

The Secrets of Concurrency 40

What happens?

 The += operation is not atomic

 Thread 1
– Reads balance = 1000

– Locally adds 100 = 1100
– Before the balance written, Thread 1 is swapped out

 Thread 2
– Reads balance=1000
– Locally subtracts 100 = 900

– Writes 900 to the balance field

 Thread 1
– Writes 1100 to the balance field

Law 6: The Law of the Corrupt Politician

The Secrets of Concurrency 41

Solutions

 Pre Java 5
– synchronized

• But avoid using “this” as a monitor
• Rather use a private final object field as a lock

 Java 5 and 6
– Lock, ReadWriteLock
– AtomicInteger – dealt with in The Law of the Micromanager

Law 6: The Law of the Corrupt Politician

The Secrets of Concurrency 42

Pre-Java 5

Law 6: The Law of the Corrupt Politician

public class BankAccount {
 private int balance;
 private final Object lock = new Object();

 public BankAccount(int balance) {
 this.balance = balance;
 }

 public void deposit(int amount) {
 synchronized(lock) { balance += amount; }
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() {
 synchronized(lock) { return balance; }
 }
}

The Secrets of Concurrency 43

ReentrantLocks

 Basic monitors cannot be interrupted and will never
give up trying to get locked
– The Law of the Uneaten Lutefisk

 Java 5 Locks can be interrupted or time out after
some time

 Remember to unlock in a finally block

Law 6: The Law of the Corrupt Politician

The Secrets of Concurrency 44

Law 6: The Law of the Corrupt Politician

private final Lock lock =
 new ReentrantLock();

public void deposit(int amount) {
 lock.lock();
 try {
 balance += amount;
 } finally {
 lock.unlock();
 }
}

public int getBalance() {
 lock.lock();
 try {
 return balance;
 } finally {
 lock.unlock();
 }
}

The Secrets of Concurrency 45

ReadWriteLocks

 Can distinguish read and write locks

 Use ReentrantReadWriteLock

 Then lock either the write or the read action
– lock.writeLock().lock();
– lock.writeLock().unlock();

 Careful: Starvation can happen!

Law 6: The Law of the Corrupt Politician

The Secrets of Concurrency 46

Law 6: The Law of the Corrupt Politician

private final ReadWriteLock lock =
 new ReentrantReadWriteLock();

public void deposit(int amount) {
 lock.writeLock().lock();
 try {
 balance += amount;
 } finally {
 lock.writeLock().unlock();
 }
}

public int getBalance() {
 lock.readLock().lock();
 try {
 return balance;
 } finally {
 lock.readLock().unlock();
 }
}

The Secrets of Concurrency 47

Even in life, it wastes effort and
 frustrates the other threads.

* mi·cro·man·age: to manage or control with
excessive attention to minor details.

7. The Law of the
Micromanager

The Secrets of Concurrency 48

Law 7: The Law of the Micromanager

 Thread contention is difficult to spot

 Performance does not scale

 None of the usual suspects
– CPU
– Disk
– Network

– Garbage collection

 Points to thread contention

The Secrets of Concurrency 49

Real Example – Don’t Do This!

 “How to add contention 101”
– String WRITE_LOCK_OBJECT =
 "WRITE_LOCK_OBJECT";

 Later on in the class
– synchronized(WRITE_LOCK_OBJECT) { ... }

 Constant Strings are flyweights!
– Multiple parts of code locking on one object
– Can also cause deadlocks and livelocks

Law 7: The Law of the Micromanager

The Secrets of Concurrency 50

AtomicInteger

 Thread safe without explicit locking

 Tries to update the value repeatedly until success
– AtomicInteger.equals() is not overridden

Law 7: The Law of the Micromanager

public final int addAndGet(int delta) {
 for (;;) {
 int current = get();
 int next = current + delta;
 if (compareAndSet(current, next))
 return next;
 }
 }
}

The Secrets of Concurrency 51

Law 7: The Law of the Micromanager

import java.util.concurrent.atomic.AtomicInteger;

public class BankAccount {
 private final AtomicInteger balance =
 new AtomicInteger();

 public BankAccount(int balance) {
 this.balance.set(balance);
 }
 public void deposit(int amount) {
 balance.addAndGet(amount);
 }
 public void withdraw(int amount) {
 deposit(-amount);
 }
 public int getBalance() {
 return balance.intValue();
 }
}

The Secrets of Concurrency 52

The JVM does not enforce all the rules.
Your code is probably wrong, even if it works.

* Don’t stop at a stop sign if
you treasure your car!

8. The Law of
Cretan Driving

The Secrets of Concurrency 53

Text

The Secrets of Concurrency 54

The Secrets of Concurrency 55

The Secrets of Concurrency 56

Law 8: The Law of Cretan Driving

 Learn the JVM Rules !

 Example from JSR 133 – Java Memory Model
– VM implementers are encouraged to avoid splitting their

64-bit values where possible. Programmers are encouraged
to declare shared 64-bit values as volatile or synchronize
their programs correctly to avoid this.

The Secrets of Concurrency 57

JSR 133 allows this – NOT a Bug

 Method set() called by two threads with
– 0x12345678ABCD0000L

– 0x1111111111111111L

 Besides obvious answers, “value” could now also be
– 0x11111111ABCD0000L or 0x1234567811111111L

Law 8: The Law of Cretan Driving

public class LongFields {
 private long value;
 public void set(long v) { value = v; }
 public long get() { return value; }
}

The Secrets of Concurrency 58

Java Virtual Machine Specification

 Gives great freedom to JVM writers

 Makes it difficult to write 100% correct Java
– It might work on all JVMs to date, but that does not mean it

is correct!

 Theory vs Practice clash

Law 8: The Law of Cretan Driving

The Secrets of Concurrency 59

Synchronize at the Right Places

 Too much synchronization causes contention
– As you increase CPUs, performance does not improve

– The Law of the Micromanager

 Lack of synchronization leads to corrupt data
– The Law of the Corrupt Politician

 Fields might be written early
– The Law of the Leaked Memo

 Changes to shared fields might not be visible
– The Law of the Blind Spot

Law 8: The Law of Cretan Driving

The Secrets of Concurrency 60

Additional resources (faster CPU, disk or network,
more memory) for seemingly stable system can

make it unstable.

* Sudden inheritance or lottery win …

9. The Law of
Sudden Riches

The Secrets of Concurrency 61

Law 9: The Law of Sudden Riches

 Better hardware can break system
– Old system: Dual processor

– New system: Dual core, dual processor

The Secrets of Concurrency 62

Faster Hardware

 Latent defects show up more quickly
– Instead of once a year, now once a week

 Faster hardware often coincides with higher
utilization by customers
– More contention

 E.g. DOM tree becomes corrupted
– Detected problem by synchronizing all subsystem access
– Fixed by copying the nodes whenever they were read

Law 9: The Law of Sudden Riches

The Secrets of Concurrency 63

A deadlock in Java can only be resolved
by restarting the Java Virtual Machine.

* Imagine a Viking father insisting
that his stubborn child eat its
lutefisk before going to bed

10. The Law of the
Uneaten Lutefisk

The Secrets of Concurrency 64

Law 10: The Law of the Uneaten Lutefisk

 Part of program stops responding

 GUI does not repaint
– Under Swing

 Users cannot log in anymore
– Could also be The Law of the Corrupt Politician

 Two threads want what the other has
– And are not willing to part with what they already have

The Secrets of Concurrency 65

Using Multiple Locks

Law 10: The Law of the Uneaten Lutefisk

public class HappyLocker {
 private final Object lock = new Object();
 public synchronized void f() {
 synchronized(lock) {
 // do something ...
 }
 }
 public void g() {
 synchronized(lock) {
 f();
 }
 }
}

The Secrets of Concurrency 66

Finding the Deadlock

 Pressing CTRL+Break or CTRL+\ or use jstack
Full thread dump:
Found one Java-level deadlock:
=============================
"g()":
 waiting to lock monitor 0x0023e274 (object

0x22ac5808, a HappyLocker),
 which is held by "f()"
"f()":
 waiting to lock monitor 0x0023e294 (object

0x22ac5818, a java.lang.Object),
 which is held by "g()"

Law 10: The Law of the Uneaten Lutefisk

The Secrets of Concurrency 67

Deadlock Means You Are Dead ! ! !

 Deadlock can be found with jconsole

 However, there is no way to resolve it

 Better to automatically raise critical error
– Newsletter 130 – Deadlock Detection with new Lock
– http://www.javaspecialists.eu/archive/Issue130.html

Law 10: The Law of the Uneaten Lutefisk

The Secrets of Concurrency 68

Conclusion

 Threading is a lot easier when you know the rules

 Tons of free articles on JavaSpecialists.EU
– http://www.javaspecialists.eu/archive

 Advanced Java Courses available

– http://www.javaspecialists.eu/courses

The Secrets of Concurrency 69

The Secrets of
Concurrency

Dr Heinz M. Kabutz
heinz@javaspecialists.eu

