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The Secrets of Concurrency

Background

 Heinz Kabutz
– Living on a Greek island in the Mediterranean (Crete)
– The Java Specialists’ Newsletter

• 50 000 readers in 120 countries
• http://www.javaspecialists.eu

– Java Champion

– Actively code Java

– Teach Java to companies:
• Java Specialist Master Course

– Sun EXL-3500 Extreme Learning Course
• Java Design Patterns Course
• http://www.javaspecialists.eu/courses
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Why Crete?

 Airport 10 minutes from my house

 24 mbit/s connection to internet (some areas)

 Closer to customers than Cape Town

 Great lifestyle, good food, clean air

 Super friendly citizens

 Wife and children are Greek citizens

 And now for the real reason ...
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2.2: The Secrets of Concurrency

 Writing correct concurrent code can be a real 
challenge; only perfect is good enough

 You need to synchronize in the precisely correct 
places
– Too much synchronization and you risk deadlock and 

contention
– Too little synchronization and you risk seeing early writes, 

corrupt data, race conditions and stale local copies of fields

 In this section, we will look at ten laws that will make 
it easier for you to write correct thread-safe code.



The Secrets of Concurrency 5

2.2: The Secrets of Concurrency

 The ten laws that will help you write thread-safe code
– Law 1: The Law of the Sabotaged Doorbell
– Law 2: The Law of the Xerox Copier
– Law 3: The Law of the Overstocked Haberdashery
– Law 4: The Law of the Blind Spot
– Law 5: The Law of the Leaked Memo 
– Law 6: The Law of the Corrupt Politician
– Law 7: The Law of the Micromanager
– Law 8: The Law of Cretan Driving
– Law 9: The Law of Sudden Riches 
– Law 10: The Law of the Uneaten Lutefisk
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Instead of arbitrarily suppressing interruptions, 
manage them better.

* Removing the batteries from your doorbell to 
avoid hawkers also shuts out people that you 

want to have as visitors

1. The Law of the 
Sabotaged Doorbell
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Law 1: The Law of the Sabotaged Doorbell

 Have you ever seen code like this?

 We will answer the following questions:
– What does InterruptedException mean?

– How should we handle it?

try {
  Thread.sleep(1000);
} catch(InterruptedException ex) {
  // this won’t happen here
}
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Shutting Down Threads

 Shutdown threads when they are inactive
– In WAITING or TIMED_WAITING states:

• Thread.sleep()
• BlockingQueue.get()
• Semaphore.acquire()
• wait()
• join()

Law 1: The Law of the Sabotaged Doorbell
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Thread “interrupted” Status

 You can interrupt a thread with:
– someThread.interrupt();
– Sets the “interrupted” status to true
– What else?

• If thread is in state WAITING or TIMED_WAITING, the 
thread immediately returns by throwing 
InterruptedException and sets “interrupted” status back
to false

• Else, the thread does nothing else.  In this case, 
someThread.isInterrupted() will return true

Law 1: The Law of the Sabotaged Doorbell
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How to Handle InterruptedException?

 Option 1: Simply re-throw InterruptedException
– Approach used by java.util.concurrency
– Not always possible if we are overriding a method

 Option 2: Catch it and return
– Our current “interrupted” state should be set to true
– Add a boolean volatile “running” field as backup mechanism

Law 1: The Law of the Sabotaged Doorbell

while (running) {
  // do something
  try {
    TimeUnit.SECONDS.sleep(1);
  } catch (InterruptedException e) {
    Thread.currentThread().interrupt();
    break;
  }
}
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Protect yourself by making copies of objects

* Never give your originals to anyone, even a bank!

2. The Law of the Xerox 
Copier
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"Safe as a Bank"

 Our home loan
application was
lying on the desk
the day this bank
was trashed by
rioters

 Fortunately, we
had only given
them copies of
our important
documents!
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Law 2: The Law of the Xerox Copier

© Greg Manset
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Law 2: The Law of the Xerox Copier

 Immutable objects are always thread safe
– No stale values, race conditions or early writes

 For concurrency, immutable means [Goetz'06]
– State cannot be modified after construction

– All the fields are final
– 'this' reference does not escape during construction

Law 2: The Law of the Xerox Copier
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How do we use an Immutable Object?

 Whenever we want to change it, make a copy
– e.g. String '+' operator produces a new String

 Additional GC expense, but concurrency is easier
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Law 2: The Law of the Xerox Copier
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Basic Thread-Safe ArrayList

15

public class ImmutableArrayList<E> implements Iterable<E> {
  private final Object[] elements;

  public ImmutableArrayList() {
    this.elements = new Object[0];
  }

  private ImmutableArrayList(Object[] elements) {
    this.elements = elements;
  }

  public int size() { return elements.length; }

  public ImmutableArrayList<E> add(E o) {
    Object[] new_elements = new Object[elements.length + 1];
    System.arraycopy(elements, 0, 
                     new_elements, 0, elements.length);
    new_elements[new_elements.length - 1] = o;
    return new ImmutableArrayList<E>(new_elements);
  }

Law 2: The Law of the Xerox Copier
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Thread-Safe Iterator
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  public Iterator<E> iterator() {
    return new Iterator<E>() {
      int pos = 0;

      public boolean hasNext() {
        return pos < elements.length;
      }

      public E next() {
        return (E) elements[pos++];
      }

      public void remove() {
        throw new UnsupportedOperationException();
      }
    };
  }
}

Law 2: The Law of the Xerox Copier
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Using ImmutableArrayList

 We use this in a more functional approach:
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ImmutableArrayList<String> ial =
  new ImmutableArrayList<String>();
ial = ial.add("Heinz").add("Max").add("Kabutz");
for (Object o : ial) {
  System.out.println("o = " + o);
}
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Having too many threads is bad for your application.  
Performance will degrade and debugging will become 

difficult.

* Haberdashery: A shop selling sewing wares, e.g. 
threads and needles.

3. The Law of the
Overstocked Haberdashery
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Law 3: The Law of the Overstocked 
Haberdashery

 Story: Client-side library running on server

 We will answer the following questions:
– How many threads can you create?
– What is the limiting factor?

– How can we create more threads?
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Quick Demo

How many inactive threads can we 
create, before running out of memory?
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Law 3: The Law of the Overstocked Haberdashery

import java.util.concurrent.atomic.AtomicInteger;
public class ThreadCreationTest {
  public static void main(String[ ] args) {
    final AtomicInteger threads_created = 

    new AtomicInteger(0);
    while (true) {
      new Thread() { { start(); } 
        public void run() {
          System.out.println("threads created: " +
            threads_created.incrementAndGet());
          synchronized (this) {
            try { wait(); } 
            catch (InterruptedException e) {
              Thread.currentThread().interrupt();
            }
          }
        }
      };
    }  
  } 
}
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JRE Dies with Internal Error

Exception in thread "main" java.lang.OutOfMemoryError: 
unable to create new native thread

   at java.lang.Thread.start0(Native Method)
   at java.lang.Thread.start(Thread.java:597)
   at ThreadCreationTest$1.<init>(ThreadCreationTest:8)
   at ThreadCreationTest.main(ThreadCreationTest.java:7)
#
# An unexpected error has been detected by Java Runtime 

Environment:
#
#  Internal Error (455843455054494F4E530E4350500134) #
# Java VM: Java HotSpot(TM) Client VM (1.6.0_01-b06)
# An error report file with more information is saved as 

hs_err_pid22142.log
#
Aborted (core dumped)

Law 3: The Law of the Overstocked Haberdashery
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How to Create More Threads?

 We created about 9000 threads

 Reduce stack size
– java -Xss48k ThreadCreationTest

• 32284 threads
• Had to kill with -9

– My first computer had 48k total memory
• Imagine 32000 ZX Spectrums connected as one 

computer!
– Can cause other problems with debugging

Law 3: The Law of the Overstocked Haberdashery
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Causing Thread Dumps

 The jstack tool dumps threads of process
– Similar to CTRL+Break (Windows) or CTRL+\ (Unix)

 For thread dump JSP page
– http://javaspecialists.eu/archive/Issue132.html

– Sorted threads allow you to diff between calls

Law 3: The Law of the Overstocked Haberdashery
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How Many Threads is Healthy?

 Additional threads should improve performance

 Not too many active threads
– ± 4 active per core

 Inactive threads
– Number is architecture specific
– But 9000 per core is way too much

• Consume memory
• Can cause sudden death of the JVM
• What if a few hundred threads become active suddenly?

Law 3: The Law of the Overstocked Haberdashery
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Traffic Calming

 Thread pooling good way to control number

 Use new ExecutorService
– Fixed Thread Pool

 For small tasks, thread pools can be faster
– Not main consideration

 See http://www.javaspecialists.eu/archive/Issue149.html

Law 3: The Law of the Overstocked Haberdashery
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It is not always possible to
see what other threads (cars) are doing

with shared data (road)

4. The Law of the 
Blind Spot
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Law 4: The Law of the Blind Spot
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Law 4: The Law of the Blind Spot

 Java Memory Model allows thread to keep local copy 
of fields

 Your thread might not see another thread’s changes

 Usually happens when you try to avoid 
synchronization

Law 4: The Law of the Blind Spot
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Calling shutdown() might have no effect

Law 4: The Law of the Blind Spot

public class Runner {
  private boolean running = true;
  public void doJob() {
    while(running) {
      // do something
    }
  }
  public void shutdown() {
    running = false;
  }
}
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Why?

 Thread1 calls doJob() and makes a local copy of 
running

 Thread2 calls shutdown() and modifies the value of 
field running

 Thread1 does not see the changed value of running 
and continues reading the local stale value

Law 4: The Law of the Blind Spot
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Making Field Changes Visible

 Three ways of preventing this
– Make field volatile

– Make field final puts a “freeze” on value
– Make read and writes to field synchronized

• Also includes new locks

Law 4: The Law of the Blind Spot
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Better MyThread

Law 4: The Law of the Blind Spot

public class Runner {
  private volatile boolean running = true;
  public void doJob() {
    while(running) {
      // do something
    }
  }
  public void shutdown() {
    running = false;
  }
}
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The JVM is allowed to reorder your statements 
resulting in seemingly impossible states (seen from 

the outside)

* Memo about hostile takeover bid left lying in 
photocopy machine

5. The Law of the
Leaked Memo
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Law 5: The Law of the Leaked Memo

 If two threads call f() and g(), what are the possible values of a 
and b ?

public class EarlyWrites {
  private int x;
  private int y;
  public void f() {
    int a = x;
    y = 3;
  }
  public void g() {
    int b = y;
    x = 4;
  }
}

Early writes can result 
in: a=4, b=3 
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The order of Things

 Java Memory Model allows reordering of statements

 Includes writing of fields

 To the writing thread, statements appear in order

Law 5: The Law of the Leaked Memo
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How to Prevent This?

 JVM is not allowed to move writes out of 
synchronized block
– Allowed to move statements into a synchronized block

 Keyword volatile prevents early writes
– From the Java Memory Model:

• There is a happens-before edge from a write to a volatile 
variable v to all subsequent reads of v by any thread 
(where subsequent is defined according to the 
synchronization order)

Law 5: The Law of the Leaked Memo
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In the absence of proper controls, 
corruption is unavoidable.

 
* Lord Acton: Power tends to corrupt.  Absolute 

power corrupts absolutely.

6. The Law of the
Corrupt Politician
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Law 6: The Law of the Corrupt Politician

 Without controls, the best code can go bad

public class BankAccount {
  private int balance;
  public BankAccount(int balance) {
    this.balance = balance;
  }
  public void deposit(int amount) {
    balance += amount;
  }
  public void withdraw(int amount) {
    deposit(-amount);
  }
  public int getBalance() { return balance; }
}
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What happens?

 The += operation is not atomic

 Thread 1
– Reads balance = 1000

– Locally adds 100 = 1100
– Before the balance written, Thread 1 is swapped out

 Thread 2
– Reads balance=1000
– Locally subtracts 100 = 900

– Writes 900 to the balance field

 Thread 1
– Writes 1100 to the balance field

Law 6: The Law of the Corrupt Politician
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Solutions

 Pre Java 5
– synchronized

• But avoid using “this” as a monitor
• Rather use a private final object field as a lock

 Java 5 and 6
– Lock, ReadWriteLock
– AtomicInteger – dealt with in The Law of the Micromanager

Law 6: The Law of the Corrupt Politician
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Pre-Java 5

Law 6: The Law of the Corrupt Politician

public class BankAccount {
  private int balance;
  private final Object lock = new Object();
  

  public BankAccount(int balance) {
    this.balance = balance;
  }
  

  public void deposit(int amount) {
    synchronized(lock) { balance += amount; }
  }
  public void withdraw(int amount) {
    deposit(-amount);
  }
  public int getBalance() { 
    synchronized(lock) { return balance; }
  }
}
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ReentrantLocks

 Basic monitors cannot be interrupted and will never 
give up trying to get locked
– The Law of the Uneaten Lutefisk

 Java 5 Locks can be interrupted or time out after 
some time

 Remember to unlock in a finally block

Law 6: The Law of the Corrupt Politician
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Law 6: The Law of the Corrupt Politician

private final Lock lock = 
  new ReentrantLock();

public void deposit(int amount) {
  lock.lock();
  try {
    balance += amount;
  } finally {
    lock.unlock();
  }
}

public int getBalance() {
  lock.lock();
  try {
    return balance;
  } finally {
    lock.unlock();
  }
}
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ReadWriteLocks

 Can distinguish read and write locks

 Use ReentrantReadWriteLock

 Then lock either the write or the read action
– lock.writeLock().lock();
– lock.writeLock().unlock();

 Careful: Starvation can happen!

Law 6: The Law of the Corrupt Politician
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Law 6: The Law of the Corrupt Politician

private final ReadWriteLock lock =
  new ReentrantReadWriteLock();

public void deposit(int amount) {
  lock.writeLock().lock();
  try {
    balance += amount;
  } finally {
    lock.writeLock().unlock();
  }
}

public int getBalance() {
  lock.readLock().lock();
  try {
    return balance;
  } finally {
    lock.readLock().unlock();
  }
}
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Even in life, it wastes effort and
 frustrates the other threads.

* mi·cro·man·age:  to manage or control with 
excessive attention to minor details.

7. The Law of the
Micromanager
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Law 7: The Law of the Micromanager

 Thread contention is difficult to spot

 Performance does not scale

 None of the usual suspects
– CPU
– Disk
– Network

– Garbage collection

 Points to thread contention
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Real Example – Don’t Do This!

 “How to add contention 101”
– String WRITE_LOCK_OBJECT = 
    "WRITE_LOCK_OBJECT";

 Later on in the class
– synchronized(WRITE_LOCK_OBJECT) { ... }

 Constant Strings are flyweights!
– Multiple parts of code locking on one object
– Can also cause deadlocks and livelocks

Law 7: The Law of the Micromanager
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AtomicInteger

 Thread safe without explicit locking

 Tries to update the value repeatedly until success
– AtomicInteger.equals() is not overridden

Law 7: The Law of the Micromanager

public final int addAndGet(int delta) {
  for (;;) {
    int current = get();
    int next = current + delta;
    if (compareAndSet(current, next))
      return next;
    }
  }
}
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Law 7: The Law of the Micromanager

import java.util.concurrent.atomic.AtomicInteger;

public class BankAccount {
  private final AtomicInteger balance = 
    new AtomicInteger();

  public BankAccount(int balance) {
    this.balance.set(balance);
  }
  public void deposit(int amount) {
    balance.addAndGet(amount);
  }
  public void withdraw(int amount) {
    deposit(-amount);
  }
  public int getBalance() {
    return balance.intValue();
  }
}
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The JVM does not enforce all the rules. 
Your code is probably wrong, even if it works. 

* Don’t stop at a stop sign if
you treasure your car!

8. The Law of
Cretan Driving
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Text
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Law 8: The Law of Cretan Driving

 Learn the JVM Rules !

 Example from JSR 133 – Java Memory Model
– VM implementers are encouraged to avoid splitting their

64-bit values where possible.  Programmers are encouraged 
to declare shared 64-bit values as volatile or synchronize 
their programs correctly to avoid this.
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JSR 133 allows this – NOT a Bug

 Method set() called by two threads with
–  0x12345678ABCD0000L 

–  0x1111111111111111L

 Besides obvious answers, “value” could now also be
–  0x11111111ABCD0000L or 0x1234567811111111L

Law 8: The Law of Cretan Driving

public class LongFields {
  private long value;
  public void set(long v) { value = v; }
  public long get()       { return value; }
}
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Java Virtual Machine Specification

 Gives great freedom to JVM writers

 Makes it difficult to write 100% correct Java
– It might work on all JVMs to date, but that does not mean it 

is correct!

 Theory vs Practice clash

Law 8: The Law of Cretan Driving
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Synchronize at the Right Places

 Too much synchronization causes contention
– As you increase CPUs, performance does not improve

– The Law of the Micromanager

 Lack of synchronization leads to corrupt data
– The Law of the Corrupt Politician

 Fields might be written early
– The Law of the Leaked Memo

 Changes to shared fields might not be visible
– The Law of the Blind Spot

Law 8: The Law of Cretan Driving



The Secrets of Concurrency 60

Additional resources (faster CPU, disk or network, 
more memory) for seemingly stable system can 

make it unstable.

 

* Sudden inheritance or lottery win …

9. The Law of
Sudden Riches



The Secrets of Concurrency 61

Law 9: The Law of Sudden Riches

 Better hardware can break system 
– Old system: Dual processor

– New system: Dual core, dual processor
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Faster Hardware

 Latent defects show up more quickly
– Instead of once a year, now once a week

 Faster hardware often coincides with higher 
utilization by customers
– More contention

 E.g. DOM tree becomes corrupted
– Detected problem by synchronizing all subsystem access
– Fixed by copying the nodes whenever they were read

Law 9: The Law of Sudden Riches
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A deadlock in Java can only be resolved
by restarting the Java Virtual Machine.

* Imagine a Viking father insisting 
that his stubborn child eat its 
lutefisk before going to bed

10. The Law of the 
Uneaten Lutefisk
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Law 10: The Law of the Uneaten Lutefisk

 Part of program stops responding

 GUI does not repaint
– Under Swing

 Users cannot log in anymore
– Could also be The Law of the Corrupt Politician

 Two threads want what the other has
– And are not willing to part with what they already have
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Using Multiple Locks

Law 10: The Law of the Uneaten Lutefisk

public class HappyLocker {
  private final Object lock = new Object();
  public synchronized void f() {
    synchronized(lock) {
      // do something ...
    }
  }
  public void g() {
    synchronized(lock) {
      f();
    }
  }
}
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Finding the Deadlock

 Pressing CTRL+Break or CTRL+\ or use jstack
Full thread dump:
Found one Java-level deadlock:
=============================
"g()":
  waiting to lock monitor 0x0023e274 (object 

0x22ac5808, a HappyLocker),
  which is held by "f()"
"f()":
  waiting to lock monitor 0x0023e294 (object 

0x22ac5818, a java.lang.Object),
  which is held by "g()"

Law 10: The Law of the Uneaten Lutefisk
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Deadlock Means You Are Dead ! ! !

 Deadlock can be found with jconsole

 However, there is no way to resolve it

 Better to automatically raise critical error
– Newsletter 130 – Deadlock Detection with new Lock
– http://www.javaspecialists.eu/archive/Issue130.html

Law 10: The Law of the Uneaten Lutefisk
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Conclusion

 Threading is a lot easier when you know the rules

 Tons of free articles on JavaSpecialists.EU
– http://www.javaspecialists.eu/archive

 Advanced Java Courses available

– http://www.javaspecialists.eu/courses



The Secrets of Concurrency 69

The Secrets of 
Concurrency

Dr Heinz M. Kabutz
heinz@javaspecialists.eu


