Pattern Hatching

COMPOSITE a la Java, Part Il

John Vlissides
Java ReportSeptember 2001

0 2001by John Vlissides. All rights reserved.

In case you're tuning in late, we are in the midst of revam@agrPosITE one of the most useful andno-
plex and controversial patterns out there. That it's useful and complex should be clear from faSotime.
what'’s the controversy?

In a word, it'sfat. A fat Component interface, to be precise.

Recall the Structure diagram f6omPOSITE shown inFigurel. Note the operations in the Coament n-
terface. After a nondescripperation come three otheradd, remove, andchildren. They're related in
that they deal with childreradding them, removing them, and enurtiagathem.

The question most people ask at this point is, Why are such methods declared in Component? After all, they
don’t make sense for Leaf classes, by definition. This appears to be a classic “fat” interface, @ie that d
clares any and all operations that subclassght implement without regard fooleerence or type safety.
Academics will add gravitas to the criticism by branding this a violation of Liskov’s SubstitutimipRyi

2
(LSP)’
Client H Component :
children

operation()
add(Component)
remove(Component)
children() : Iterator

1

Leaf Composite
K K forall ¢ in children
operation() operation() == === —+4==—===- c.operation();
add(Component)

remove(Component)
children() : Iterator

Figure 1: ClassicCompPosITEStructure

How bad is it?

Not bad at all, necessarily. We're not talking about a random collection of operations here; ai@mque

are childrelated. Whetheihey “make sense” or not for Leaf classes depends on the application. I've argued
that the semantics of callirgld on a Leaf object could well be “do nothing,” or “throw an exception,” or
“print an error messagé.As for LSP, all that formidablsoundingdictum says is that a supertype’s beha

ior must be supported by its subtypes, and that you should be able to subdiifyte shjects for

supertype objects without affectingesit code. If those properties hold, you avoid the wrath of Liskov.

Good thing too, because there may be splendid reasons to declareéiited operations in the Coop
nent interface. In the context GOMPOSITE the primary reason is to achieve a key aspect of the pattern’s
intent—uniformity.



2 ComposITEa la Java, Part Il

Here again is the full Intent stahent as doctored up last time:

Assemble objects into tree structur€emprosiTEsimplifies clients by
letting them treat individual objects and assemblies of objects un
formly.

The trouble with barring childelated operations from the Component interfadbat it defeats the very
uniformity we seek. So why would one want to do it? Apart from blirelliemce to LSP, the most common
pretext is static type safety, or at least the hope of it. To witidifappears in Composite interfaces excl
sively, thenthe compiler will disallow any call tadd on a Leaf. Trouble is, it'll do the same for any call to
add on a Component.

Suppose you're traversing a composite structure. The first thing you need is a way to get at a component’s
children. This alone arguesrfachildren operation in the Component interface:

public void traverse (Component c) {
Iterator i = c.children();

while (i.hasNext()) {
Component child = (Component) i.next();

// do something with child, and/or...

traverse(child);

}

Note that we're already flouting static type safety here thanks to the downeastf return value. Chalk
it up to Java’s lack of parameterized types, or its creators’ fascination with casting, or whalevi€s

not statically typesafe. And yet you could argue, rightly | think, that if a componemtagts something
other than components as children, something is very wrong indeedldd bperation guarantees as much
by taking onlyComponent objects as parameters.

Anyway, let's &sume this level of type safety is acceptable, since traversal is definitely something we want
to do in Java. In other words, we're okay with declathgildren in our Component interface.

Now syppose we want to add something to a child during the trdvétsee’s the rub: Even if we know
statically that said child is a composite, we'll nonetheless have to casbiifgosite to get at itadd op-
eration. I'll illustrate by replacing the comment in the code above with the cast I'm talking about:

((Composite) child).add(new Leaf());
If we're not sure the child is a composite, we might assuage our fears with a test.

if (child instanceof Composite) {
((Composite) child).add(new Leaf());
} else {
// so much for static type safety
}

My point is that static type safety can be an illusion, LSP or no LSP. Rather than kidding ourselves as to its
preeminence, maybe it's better to admit we can’t guarantee it and err on the side of uniformity.

Therein lies the bedy of a pattern: it doesn’t have to come down on one side of a controversy. Iscan di
passionately relate the available traxds and allow you to make an informed choice. You can trade off
uniformity for static type safety and vice versa, depending ®citbumstances. One size needn't fit all.

An alternate Structure

That said, there may well be times and programming languages in which erring on the side of static type
safety (and hence omitting chitdlated operations from the Component interface) sipkefect sense. A
reader who reaches that conclusion may Figdire1 misleading. That's especially likely for those who

Pattern Hatching Java Report Septembe2001



ComposITEa la Java, Part Il 3

labor under the misconception that the Structure diagraragedficationof the pattern’s implemeation
rather than just aexamplethereof.

We made it a point to include just one class diagram per Structure section. Now I'm thinkirglifigdbje
to include two here, one for the “unifot case and another for the “tyjsafe” case (seigure2). The
main difference is that type safety requires asdp interface for Composites.

Client Component :
children

operation()
children() : Iterator

7
| |

Leaf AbstractComposite

operation() operation()
add(Component)
remove(Component)
children() : Iterator

i

Composite

K forall ¢ in children
operation() == ====T=====-"- c.operation();
add(Component)

remove(Component)
children() : Iterator

Figure 2: Alternate Structure diagram for the “typsafe” case

Participants, Collaborations, and Consequences

While the Collaborations haven't changed, the Participants section needs updating to reflect the changes to
the Structure diagram. In particular, there new bullet to describe AbstractComposite, and Composite is
tweaked to allow for AbstractComposite’s possible presence.

The current Consequences section pretty much covers the good and the bad of the pattern, so I'll leave well
enough alone there as Mwé do have a cosmetic change, however.

Nowadays | like to segregate a pattern’s benefits and liabilities. | particularly like how the Siemens folks
use separate itemized lists set off by an introductory sentence containing a form of the word “brenefit” o
“liability” in bold. *® It's easy to distinguish the good cegaences from the n@b-good ones. We already

use bold to identify glossary words, though. So I'll use italics, even though they don’t stand out as well as
bold. The result looks like this:

CowmposiTeoffers thesdenefits:
« It defines class hierarchies consisting of primitive objects and composite objects....
e It simplifies the client....
¢ It makes adding new kinds of components easier....
The pattern has the followird@bility:
e It can make your desigoverly general....

CowmposiITEs dearth of liabilities introduces a small inelegance, namely a bulleted list with only one bullet.
The standardized benefits/liabilities format lets us get away with it, but ideally there’d be at least one more
bullet and a bility to go with it. One possibility is the threat of inefficiency if the pattern is applied at too
fine a granularity. That's awfully close to the existing liability, | fear.

Pattern Hatching Java Report Septembe2001



4 ComposITEa la Java, Part Il

In any case, if a lone bullet really gets your goat, we could merge its tsowniémthe introductory sentence
(“The pattern’s chiefiability is that it can make your design overhnggal....”). | can certainly live with
that.

Implementation

“There are many issues to consider when implementing the Composite pattern.” No jokbeeTnalth I've
never been happy with the current hodgepodge of implementation items. Whenever you have more than
four or five items, you're almost certain to get that gnalggy feel.

One way to reduce the number of items is to group them into related/bits are then substtured.
Here are the nine items we have currently:

1. Explicit parent references.

Sharing components.

Maximizing the Component interface.

Declaring the child management operations.

Should Component implement a list of Components?
Child ordering.

Caching to improve performance.

© N o g~ 0D

Who should delete components?
9. What's the best data structure for storing components?

These items are interdependent, naturally, as they concern the same pattern. But thatfe eoensoonk
ities that we can exgit.

The most obvious one lies in items 3 and 4, both of which address the fat interface issue. In fact,aghe distin
tion between these two seems downright arbitrary. They could easilydaidated into an item titled

“Type safety versus uformity,” which cuts to the crux of the issue. While we're at it, we should mention

the role of Java interfaces and abstract classes, two features that weren't available in the original languages.
It's the usual admonition, but it bears repeating: use interfaceagerdbasses, putting any defaultdun

tionality in abstract classes that partially implement those interfaces.

Other commonalities are subtler. Items 2 and 8 have to do with childgiimeShared components cannot
be deleted indiscriminately, and (lack ghrbage collection plays a big role in both items. Accordingly, we
can group them under the rubric of “Child ownership.” Meanwhile, items 1, 5, 6, and 9 are all atbout ass
ciations letween parent(s) and child(rerwhether they're explicit, ordered, howetfire implemented and
where. We'll unite these guys under “Associations between Composite and Leaf components.”iiiéle orig
items show up as subitems of these groups (suitably tweaked and updated, of course).

That leaves item 7, the only item that focuseerformance per se. Seeing as there’s no law that says

every item must have subitems, it can certainly stand by itself. Nevertheless, | can think of a few-other pe
formance issues worth addressingpplying the pattern at too fine a granularity, forregle, and the

attendant bad juju. Together, such issues can form a comprehensive discussion of performance, which the
pattern underemphasizes right now, IMHO.

So now we have just four main implementation items:
1. Type safety versus uniformity.
2. Child ownershp.

Pattern Hatching Java Report Septembe2001



ComposITEa la Java, Part Il 5

3. Associations between Composite and Leaf components.
4. Performance.

Much better.

Sample Code

Currently, this section of the pattern breaks an unwritten but cardinal rule: The Sample Code should illu
trate the example in the Mweation section. Why? Threeasons:

1. It takes verbiage to give an example and make it understandable. The Motivation $eszidy a
does it, so why do it again for a differemxtaeple in the Sample Code?

2. Repetition is the mother of understanding, or something like that.
3. I'mlazy. Coming up with another good example is work I'd rather not do.

Clearly then, Sample Code should illustrate the file browser example of the new Motivation given.in Part
Oddly enough, that example suggests a toaard type safety. Figure 3 in Part | shaws, remove, and
children operations declared in tlh@1der Composite class but not in tNede interface it implements.

The Sample Code should illustrate that implementation along with one that showcasg®timesp-

proach.

Alas, you'll have to use your imagination for the rewrite, because I'm nearly out of space. One thing you
won’t have to guess about, though, is the predominant implementation language. Only stuff that can’t be
expressed in Javaa variatia using parameterized types, for exampleould call for a different laguage,
C++ in that particular case. If you're one of those hoary Smalltalkers, let me point you to an exeellent r
sourceThe Design Patterns Smalltalk Companidhdoes a better jobf rendering our patterns in

Smalltalk than | can ever do.

Known Uses

CowmposITEs original known uses are as valid as ever, but they're a bit long in the tooth. Happily, there’s
no shortage of examples in the JDK. Note which side of the fat interfacewansir each use falls on.

e java.awt.Component/Container errs on the side of type safety.
e javax.swing.text.View/CompositeView errs on the side of uniformity.

¢ javax.sound.sampled.Control/CompoundControl is a variation in which the set of children is
immutable—they’re supplied in the CompoundControl constructor. There’s no interface fay-chan
ing their number. Otherwise this use is strongly biased toward static type safety, as only
CompoumniControl includes so much agatMemberControls method.

e javax.swing.BordéCompoundBorder is similar to Control/CompoundControl but more degene
ate—there are just two construcispecified chdren.

Related Patterns

Material for this section was easy to come up with as we Wresggn Patterns-the only p&erns we had

to relateto were our own! Things are much different now. One thing we purpose to do in all our patterns is
link them to the nowvast pattern literature. Because the literature gets added to every day, Related Patterns
has become the most opended section. Stillye think readers will appreciate pointers tttgras from

whaever source, as long as they’re good and relevant. And not just pointers to patterns but also to known
uses, case studies, and anything else that sheds light on the pattern in questidny TdveCemPOSITEIN

The Pattern Alranac’ is a foreshadowing of the new version.

Pattern Hatching Java Report Septembe2001



6 ComposITEa la Java, Part Il

Acknowledgments

Hats off to Erich Gamma, Richard Helm, Heinz Kabutz, and Dirk Riehle for many helpful suggestions.

References

! Viissides, J. ComposITEA la Java, Part | Java ReportJune 2001, pp. 72, 620.

2 Liskov, B., J. GuttagProgram Development in JayAddisor-Wesley, 2001.

3 Vlissides, JPattern Hatching Addison-Wesley, 1998, pp. 124.

4 Buschmann, F., et @PatternOriented Softwee Architecture: A System of Patteriiley, 1996.

® Schmidt, D., et aPatternOriented Software Architecture, Vol. 2: Patterns for Concurrent artd Ne
worked ObjectsWiley, 2000.

® Alpert, S., et alThe Design Patterns Smalltalk Companigadisor-Wesky, 1998.

" Rising, L.The Pattern Almanac 2008ddisor-Wesley, 2000.

Pattern Hatching Java Report Septembe2001



