
Pattern Hatching

COMPOSITE à la Java, Part I
John Vlissides
Java Report, June 2001

 2001 by John Vlissides. All rights reserved.

Some of the most common patterns1 are also the simplest, at least on their face. PROTOTYPE amounts to
one method, copy, though it’s easier said than done. Never heard of TEMPLATE METHOD? Don’t worry.
You’re sure to have used it unwittingly if you know anything about object-oriented programming. And if
STRATEGY wasn’t taught in your Objects 101 class, it must have been the remedial section.

Conversely, the more complicated a pattern is, the less common it tends to be. It’s no coincidence that
FLYWEIGHT, INTERPRETER, and VISITOR are among the most complex, least understood, and least used
patterns in our repertoire. When you need them, you need them; that’s when most people bother to learn
them. Until such time, they’re easy to ignore.

But a few patterns are common and complex. BRIDGE, COMPOSITE, and OBSERVER come to mind here.
Patterns like these tend to offer the biggest payoffs, and the biggest challenges.

I’ll spend the next several columns looking at those last three patterns in detail. My aim is to rehabilitate
them, as it were—to make them more relevant to Java, and just better all around. I’ll be doing a lot of
questioning and complaining and thinking out loud. Let me know if it gets annoying.

Rethinking COMPOSITE
Of all the structural patterns, COMPOSITE strikes me as most interesting and, strangely enough, the most
controversial. It’s interesting for a couple of reasons. First off, it describes a fundamental object-oriented
data structure—the tree. But it’s more than just another data structure because of how central polymor-
phism is to the pattern. Without polymorphism, there would be no uniformity. Clients would have to treat
different elements in the tree differently. Which means you couldn’t introduce new kinds of elements
without changing clients. Which pretty much demolishes the pattern.

I can’t think of a better argument for polymorphism than its role in COMPOSITE. As for the controversy,
it’s died down in recent years, but it flares up now and then. I’ll defer discussing it until much later—till
my next column, actually. Suspense is rare in computer discourse, no?

If we had to do COMPOSITE over again (and we do), the first thing I’d change is the Intent section. Right
now it goes like this:

Compose objects into tree structures to represent part-whole hierar-
chies. COMPOSITE lets clients treat individual objects and
compositions of objects uniformly.

That’s almost okay. It’s got the “one or two memorable words” characteristic of a good Intent. In this case
the words to remember are “tree” and “uniformly.”

The words I don’t like are “part-whole”—a Smalltalk-ism from way back—and the repetition of “com-
pose”/“compositions”—too obscure and too complicated. What the heck is a “part-whole” anyway? And
what does it mean to “represent … hierarchies” of them? That clause doesn’t help enough to offset its
vagueness, so let’s flush it.

2 COMPOSITE à la Java, Part I

Pattern Hatching Java Report June 2001

On the other hand, when people read “compose,” I bet a lot of them visualize Beethoven scrawling a sym-
phony onto parchment. I claim “assemble” evokes a better picture. Let’s see…

Assemble objects into tree structures. COMPOSITE lets clients treat in-
dividual objects and assemblies of objects uniformly.

Getting better, but there are still problems here. The first is that there isn’t a “problem”—it’s not clear
why you’d want to do this. The clause we dropped contained the sole hint of a problem to be solved,
namely that you need to represent something. Unfortunately, that something (“part-whole hierarchies”) is
meaningful to a minority of readers (hoary Smalltalkers), and even for them, the problem isn’t all that
explicit. Part-whole hierarchies of what, pray tell? It screams for an example. Too bad there isn’t room
for one—this is the Intent, you’ll recall.

Seeing as we don’t have space to be excruciatingly clear about the problem, we can do the next best thing:
appeal to motherhood.

What does uniformity really buy us? At the end of the day, it simplifies the client. If clients can deal with
objects uniformly, they don’t have to test for differences and react accordingly. The differences are en-
coded in the concrete types of elements. Clients don’t see concrete types; from their perspective
everything’s the same (abstract) type.

So why don’t we say as much?

Assemble objects into tree structures. COMPOSITE simplifies clients by
letting them treat individual objects and assemblies of objects uni-
formly.

There, isn’t that better? Um, well, like I said long ago, the Intent section may be the shortest, but it’s the
darnedest to get right. Drop me a line if you can do better.

Graphics, assets, or files?
Next up is the Motivation section. Currently it illustrates the pattern with a drawing editor, in which a
user draws simple shapes such as lines and circles and assembles them into complete drawings. Classes
that implement shapes play the Leaf role in the pattern. The Picture class plays the Composite role. The
Graphic base class serves as the Component, defining the interface that all graphical elements implement
to one degree or another.

For a while now I’ve suspected that this isn’t the most accessible example of the pattern. I mean really,
how many people use drawing editors, let alone implement them? They rank alongside tax packages and
diet managers in the roster of niche applications. We can do better.

Could a more enlightening example be right under my nose? Of the examples mentioned in the Known
Uses section, one in particular seems mainstream enough for the Motivation:

Another example of this pattern occurs in the financial domain, where
a portfolio aggregates individual assets. You can support complex ag-
gregations of assets by implementing a portfolio as a Composite that
conforms to the interface of an individual asset.2

Most people have assets they manage, right? (Most people reading this column, anyway.) Thinking of a
portfolio as a composite of assets should therefore be easy to grasp. Alas, the whole discussion currently
amounts to those two sentences.

“Let’s rectify that,” I say to myself. So off I go to rewrite the Motivation with an eye toward asset portfo-
lios. Several false starts later, I realize I need to take a closer look at that cited known use.

COMPOSITE à la Java, Part I 3

Pattern Hatching Java Report June 2001

Instrument

CompositeInstrumentSwapSide Future FRA

Component

Leaf

CompositePortfolio SwapTransaction

Figure 1: Financial instrument hierarchy

To make a long story short, Figure 1 depicts the COMPOSITE class hierarchy from the paper that describes
the original example. I’ve added the gray boxes to indicate the roles each class plays in the pattern. With-
out explanation, you probably have more than a few questions about those classes, even if you know the
pattern well.

Clearly there’s some non-obvious domain knowledge here. Equally clearly, these classes do nothing to
make the example more accessible. For a while I toy with simplified versions of the same basic example,
but nothing really clicks. The drawing editor example is looking better all the time.

Then I recall the example in Pattern Hatching of an object-oriented file system API.3 That example has
proven accessible all right—too accessible. From the beginning, Erich complained that it’s contrived, that
no one would really design a file system API that way. I’ve countered that, while his complaint may have
been valid at one time, several folks have since told me they’ve modeled their file system interface after
precisely that example.

Funny, though, how nobody’s ever sent me a follow-up saying how well it turned out. Makes you wonder
how successful they’ve been. “Maybe a file system API isn’t the best-documented example,” I lament.

Then it hits me: The Motivation example doesn’t have to be corroborated. It just has to be, well, motivat-
ing. That means it’s understandable (so you can recognize when the pattern’s needed) and plausible (to
make you believe it’s ever needed). I also realize that I don’t have to talk about a file system API per se. I
can discuss the design of something similar but more familiar to mere mortals: A file browser.

The Motivation won’t be understandable if the example isn’t simple, and a file browser is surely that, at
least from the user’s perspective. It’s plausible too, since (a) everybody who’s used a PC has used a file
browser called “Windows Explorer,” and (b) an object-oriented design for one shouldn’t surprise anybody
who programs in Java. The Motivation doesn’t have to implement or even substantiate the example—it
can leave those duties to other sections.

I think a file browser example can succeed on these counts. See if you agree.

Motivation
A file browser (Figure 2) manages information on disk. It lets you group files of different types into fold-
ers. These in turn may be grouped with files and folders into other folders, and so on. A simple
implementation would define classes for files of different types, such as Document and Executable, plus
classes that act as containers, like Folder and Trash.

4 COMPOSITE à la Java, Part I

Pattern Hatching Java Report June 2001

Figure 2: A file browser

But there’s a problem with that approach. Browser code that works with files and folders must handle
them differently, because they have different types. Yet most of the time, users of the browser treat files
and folders identically. For example, users can “open” any file system object just by double-clicking, and
they can view its name, creation time, and other common attributes using the same menu operations.

The code in the browser that responds to a double-click shouldn’t have to check whether it’s a document
or a folder before opening it. That would complicate the code unnecessarily, just as it would complicate
the user interface to have to left-double-click to open a file but right-double-click to open a folder. A
common programming interface for telling file objects to “open” themselves has similar benefits. Browser
code could ignore the details of opening different types of files, relying on the objects themselves to re-
spond appropriately. The COMPOSITE pattern makes that possible. It describes how to assemble file
objects so that browser code doesn’t have to distinguish their types.

The key to the COMPOSITE pattern is an interface that represents individual objects and containers. For the
file browser, this interface is Node. Node declares operations like open and getSize that make sense for
all file objects but may nevertheless be implemented differently for different types. It also declares opera-
tions that all container objects share, such as operations for accessing and managing the objects they
contain.

Document

open()
getSize() : int

Executable

open()
getSize() : int

Shortcut

open()
getSize() : int

Folder

open()
getSize() : int
add(n : Node)
remove(Node)
getChildren() : Iterator

Node

open()
getSize() : int

*

1

children

int sum = 0;
forall c in children
 sum += c.getSize();
return sum;

add n to children

Figure 3: Node hierarchy for file browser objects

The subclasses Document, Executable, and Shortcut (see Figure 3) define simple file system objects.
These classes implement open and getSize to open each kind of file object and to calculate its size, re-
spectively. Since these objects aren’t containers, none of these subclasses implements container-related
operations. The Folder class defines a container of Node objects. Folder implements getSize by calling
getSize on the objects it contains and summing the results. Folder also implements container-related

COMPOSITE à la Java, Part I 5

Pattern Hatching Java Report June 2001

operations appropriately. Because the Folder interface conforms to Node’s, Folder objects can contain
other Folders recursively. You can also add new subclasses of Node without changing existing ones.

Figure 4 shows a sample hierarchy of Node objects.

root:
Folder

bin: Folder usr: Folder
tmp:

Folder

ls:
Executable

tom:
Folder

dick:
Folder

harry:
Folder

junk:
Document

Figure 4: Sample object structure

Applicability
(The original version is pretty good, except for another irksome “part-whole” and a few other details. It’s
easily fixed.)

Use COMPOSITE when

• you want to work with hierarchies of objects.

• you want clients to be able to ignore the difference between groups of objects and individual ob-
jects. Clients can treat all objects in the hierarchy uniformly.

Auf wiedersehen
I’ll tackle the rest of the pattern next time, including the all-important Consequences, Implementation,
and Sample Code sections. Nothing will be sacred, I assure you.

Acknowledgments
My thanks to Dirk Riehle for his timely feedback.

References

1 Gamma, E., et al. Design Patterns, Addison–Wesley, Reading, MA, 1995.
2 Birrer, A. and T. Eggenschwiler. Frameworks in the financial engineering domain: An experience re-
port. In European Conference on Object-Oriented Programming, pages 21–35, Kaiserslautern, Germany,
July 1993. Springer-Verlag.
3 Vlissides, J. Pattern Hatching, Addison–Wesley, Reading, MA, 1998, pp. 13–59.

